
Declarative Liquidity Manager (DLM)

Alex Euler

September 22, 2023

Abstract

DLM is a modern DeFi protocol that offers users a flexible platform for
decentralized asset management. The system autonomously handles DeFi
liquidity for users and supports both fungible and non-fungible tokens.

Contents

1 Overview 2

1.1 Evolution of Liquidity Management in DeFi 2

1.2 Account abstraction . 3

1.3 Intent-based architectures . 3

2 Declarative Liquidity Manager 4

2.1 Introduction . 4

2.2 High level architecture . 4

2.3 Wiring framework . 6

2.3.1 Safe{Core} AA SDK . 6

2.3.2 Crystal Pattern . 7

2.4 TVL estimate . 10

2.4.1 Spot prices . 10

2.4.2 Derivative prices . 10

1

https://alexeuler.dev

2.4.3 Estimation of Smart Wallet TVL 11

2.5 Rebalance mechanics . 11

2.6 Intent-based architectures . 13

3 Use Cases 14

3.1 Portfolio Management . 14

3.2 Lending markets . 15

3.3 Cost effective Call/Put Options 16

4 Summary 17

1 Overview

1.1 Evolution of Liquidity Management in DeFi

The origins of DeFi can be traced back to the creation of Bitcoin in 2009, which
introduced a decentralized, peer-to-peer network for transferring value without
intermediaries. However, it was not until the emergence of Ethereum in 2015
that the foundations for DeFi were truly laid. With Ethereum’s support for
smart contracts, developers were able to build decentralized applications that
could execute complex financial transactions on the blockchain.

The first wave of DeFi asset management protocols appeared in 2016, with
the creation of decentralized exchanges such as EtherDelta and 0x. These DEXs
allowed users to trade cryptocurrencies without the need for a centralized ex-
change, enabling a more secure and transparent trading environment.

In 2017, the DeFi landscape expanded with the introduction of decentralized
lending platforms, such as MakerDAO and Compound. These platforms allowed
users to lend and borrow cryptocurrency in a decentralized and trustless manner,
without the need for a traditional financial intermediary.

In 2018, the first decentralized asset management protocol, Melonport, was
launched. Melonport provided a platform for users to create and manage their
own investment funds, giving investors greater control over their assets and
removing the need for a centralized fund manager.

The DeFi asset management space continued to evolve in 2019, with the
launch of new protocols such as Set Protocol and PieDAO. Set Protocol allowed
users to create and manage baskets of assets, known as ”sets”, while PieDAO in-

2

troduced the concept of community-led asset management, where the investment
decisions of the fund were made through a decentralized governance process.

In 2020, the DeFi space experienced a massive surge in activity, with the
TVL in DeFi protocols increasing from less than $1 billion to over $15 billion
in just a few months. This growth was partly fueled by the emergence of new
DeFi asset management protocols such as Yearn Finance and Enzyme, which
introduced novel concepts such as yield farming and automated asset manage-
ment.

In 2022, during a larger crypto-economic boom, the new innovative protocols
that expanded the horizons of liquidity management and financial decentraliza-
tion. Key players, such as Mellow, Gamma, and Brahma, emerged during this
period, each bringing their unique offerings and architectures.

1.2 Account abstraction

Ethereum has two types of accounts: Externally Owned Accounts (EOAs) and
Contract Accounts. EOAs are controlled by private keys and are used primarily
for sending and receiving Ether. In contrast, Contract Accounts are governed
by their code and are responsible for the logic and operations of smart contracts.

Account abstraction is, at its essence, an attempt to merge the distinctions
between these two types of accounts. By doing so, it seeks to offer users bet-
ter UX and provide developers with more flexibility in coding contracts. This
initiative doesn’t just make Ethereum simpler; it also paves the way for a host
of new features. For instance, with account abstraction, smart contracts can
directly pay for gas fees and eliminating the need for users to hold Ether in
their wallets for transaction costs.

1.3 Intent-based architectures

Traditionally, users interact with Ethereum by creating and signing transactions
that the Ethereum Virtual Machine (EVM) uses to execute a state transition.
However, crafting these transactions can be intricate, forcing users to navigate
a complex web of smart contracts. To simplify this, ”intents” were introduced.
An intent is essentially a signed set of constraints allowing users to delegate
the creation of transactions to third parties, without giving them full control.
While a traditional transaction requires a specific computational path, an intent
provides flexibility within specified boundaries, permitting various pathways as
long as certain constraints are met.

Clever use of intents can elegantly simplify several processes:

3

• Limit Orders: Specifying conditions for buy/sell transactions

• CowSwap style Auctions: Using third-parties for optimal order match-
ing

• Gas Sponsorship: Allowing for gas payments in alternative tokens

• Delegation: Limiting interactions to pre-authorized methods

• Transaction Batching: Grouping multiple intents for efficiency

Intents can also play a pivotal role in asset management. By leveraging the
intent-based paradigm, asset managers can streamline their operations by spec-
ifying investment objectives without dictating each transaction’s details. For
instance, instead of specifying purchases of specific stocks or assets at particu-
lar prices, an asset manager can express an intent like, ”Optimize my portfolio
for maximum growth over the next quarter, keeping the risk moderate,” and
let the underlying system or third-party providers decide the best trades or
adjustments to achieve that intent.

2 Declarative Liquidity Manager

2.1 Introduction

In this paper, we introduce a novel design for a Declarative Liquidity Manager
(DLM). The distinguishing features of DLM are outlined as follows:

1. Intuitive Asset Allocation: DLM offers an easily definable asset allo-
cation function

2. Adaptive Flexibility: The asset allocation function is highly flexible,
capable of incorporating any current or historical onchain data

3. Efficiency and Deployment: DLM has been optimized for minimal gas
consumption, and its smart wallet can be deployed swiftly and inexpen-
sively

4. Cost-effective Rebalancing: One of DLM’s core advantages is its ca-
pability to rebalance assets at an optimal cost

2.2 High level architecture

At the heart of the proposed system is the smart wallet. This wallet is a
lightweight smart contract designed to store fungible, non-fungible, and native

4

Figure 1: High level architecture

tokens. (see Figure 1). It can also integrate various smart contract modules,
enhancing its utility beyond mere token storage. The concept assumes that each
asset management strategy will possess its dedicated smart wallet. This wallet
will safeguard the tokens of liquidity providers, which are then orchestrated by
specific modules.

The proposed architecture is based on a modular design that is inherently
extensible. Initially, we anticipate the integration of the following modules:

• Roles Module: Facilitates Role-Based Access Control within the smart
wallet

• TVL Module: Quantifies the smart wallet’s TVL in USD or native to-
kens such as ETH, MATIC, etc.

• Deposit Module: Tasked with overseeing the deposits and withdrawals
made by Liquidity Providers

• Rebalance Module: Provides solvers with the capability to rebalance
assets within the smart wallet in accordance with a predetermined asset
distribution

5

2.3 Wiring framework

Vaults and smart wallets systems are being developed for many years, more
active during the recent DeFi summer. It didn’t take long for vault developers
to recognize the importance of a modular approach to smart wallet functionality.
However, the mechanics of attaching the modules to smart wallets is not yet
standardized.

First attempt at module decomposition was made in ERC-2535 (diamond
pattern). Later developments include ERC-4337 (Account Abstraction), ERC-
6900 (Modular Smart Contract Accounts and Plugins) and Safe protocol.

We suggest considering one of two proposed solutions:

• Safe{Core} AA SDK: A modular smart wallet protocol that uses Ac-
count Abstraction to build a wide range of wallets and other solutions
through a shared plugin interface

• Crystal Pattern: An alternative to ERC-2535 diamond pattern focused
on cheaper calls and smart wallet deployments

2.3.1 Safe{Core} AA SDK

The Safe{Core} Protocol is an open-source framework for modular smart ac-
counts that are composable, portable, and secure. The protocol is inspired by
the learnings from the Safe Smart Account but is fundamentally vendor-agnostic
and meant as an ecosystem initiative, solving the following challenges:

• Fragmentation: As various smart accounts are developed by vendors,
tooling and applications have to prioritize which ones to be compatible
with. This may result in major fragmentation of the smart account ecosys-
tem and lack of component reuse. This degradation of both developer and
user experience reduces the overall growth and utility of smart accounts

• Vendor Lock-In: Externally owned accounts are a widely accepted stan-
dard, allowing portable accounts across wallets and applications. The frag-
mentation of smart accounts, however, may create vendor lock-in due to
wallets creating proprietary account implementations that reduce porta-
bility. End users may face restrictions when trying to move their assets
or interact with different services

• Security Risks: Smart accounts introduce additional smart contract
risk, similar to other smart contract-based systems like bridges or DeFi
protocols. Without sufficient security, users will not feel comfortable lever-
aging the full potential of smart accounts

6

https://eips.ethereum.org/EIPS/eip-2535
https://eips.ethereum.org/EIPS/eip-4337
https://eips.ethereum.org/EIPS/eip-6900
https://eips.ethereum.org/EIPS/eip-6900
https://github.com/safe-global/safe-core-protocol-specs/blob/main/whitepaper.pdf

To address these challenges the Safe{Core} Protocol aims to achieve max-
imum reuse and interoperability of components, retain portability, and estab-
lish stronger security properties for smart accounts. Developers adopting the
Safe{Core} Protocol benefit from increased security, interoperability, and com-
posability with the wider smart account ecosystem, as well as means to charge
fees in the future.

2.3.2 Crystal Pattern

Figure 2: Crystal pattern

2.3.2.1 Smart Wallet

In this article, we introduce The Crystal Pattern. It is engineered for mini-
mal gas consumption during deployment and calls, all while maintaining wallet
upgradability. To achieve this goal, we employ a combination of several estab-
lished proxy standards:

• ERC-7229: Minimal upgradable proxy contract

• ERC-1822: Universal Upgradeable Proxy Standard (UUPS)

7

https://ethereum-magicians.org/t/erc-7229-minimal-upgradable-proxy-contract/14754
https://eips.ethereum.org/EIPS/eip-1822

Table 1: Crystal Smart Wallet Opcodes
Opcode Opcode + Arguments Description Stack View

Constructor code

0x60 0x60 0x00 PUSH1 0x00 0
0x73 0x73 impl PUSH20 impl impl 0
0x81 0x81 DUP2 0 impl 0
0x19 0x19 NOT 0xffff..ffff impl 0
0x55 0x55 SSTORE 0
0x60 0x60 0x50 PUSH1 80 80 0
0x80 0x80 DUP1 80 80 0
0x60 0x60 0x23 PUSH1 35 35 80 80 0
0x83 0x83 DUP4 0 42 80 80 0
0x39 0x39 CODECOPY 80 0
0x81 0x81 DUP2 0 80 0
0xf3 0xf3 RETURN 0

Deployed code

0x60 0x60 0x00 PUSH1 0 0
0x36 0x36 CALLDATASIZE csize 0
0x81 0x81 DUP2 0 csize 0
0x80 0x80 DUP1 0 0 csize 0
0x37 0x37 CALLDATACOPY 0
0x80 0x80 DUP1 0 0
0x80 0x80 DUP1 0 0 0
0x36 0x36 CALLDATASIZE csize 0 0 0
0x81 0x81 DUP2 0 csize 0 0 0
0x33 0x33 CALLER caller 0 csize 0 0 0
0x73 0x73 admin PUSH20 admin admin caller 0 csize 0 0 0
0x14 0x14 EQ false 0 csize 0 0 0
0x60 0x60 0x2a PUSH1 42 42 false 0 csize 0 0 0
0x57 0x57 JUMPI 0 csize 0 0 0
0x80 0x80 DUP1 0 0 csize 0 0 0
0x19 0x19 NOT 0xffff..ffff 0 csize 0 0 0
0x54 0x54 SLOAD impl 0 csize 0 0 0
0x60 0x60 0x40 PUSH1 64 64 impl 0 csize 0 0 0
0x56 0x56 JUMP impl 0 csize 0 0 0
0x5b 0x5b JUMPDEST impl 0 csize 0 0 0
0x5a 0x5a GAS gas impl 0 csize 0 0 0
0xf4 0xf4 DELEGATECALL success 0
0x3d 0x3d RETURNDATASIZE rsize success 0
0x82 0x82 DUP3 0 rsize success 0
0x80 0x80 DUP1 0 0 rsize success 0
0x3e 0x3e RETURNDATACOPY success 0
0x3d 0x3d RETURNDATASIZE rsize success 0
0x82 0x82 DUP3 0 rsize success 0
0x82 0x82 DUP3 success 0 rsize success 0
0x60 0x60 0x4e PUSH1 78 78 success 0 rsize success 0
0x57 0x57 JUMPI 0 rsize success 0
0x5b 0x5b JUMPDEST 0 rsize success 0
0xf3 0xf3 RETURN success 0

8

Figure 3: Crystal Logic layout

• TransparentUpgradeableProxy

First, we establish a Crystal Logic Contract that contains all potential mod-
ules. The Smart Wallet is designed as a Minimal Upgradeable Proxy. This
proxy delegates to the Upgrade Logic when the caller is identified as the proxy
admin. In other scenarios, it delegates to the Crystal Logic.

The deployment code details are provided in Table 1. The gas required for
deploying this Smart Wallet is approximately 130k.

2.3.2.2 Crystal Logic

In the conventional Diamond pattern, every selector is directly mapped to its
respective logic address. This configuration implies that introducing a new
method incurs a minimum deployment gas cost of 21k. For a smart wallet having
a relatively conservative 50 selectors, this equates to a baseline gas expenditure
of 1 million for each deployment.

The Crystal Logic tackles this limitation by employing contract bytecode for
selectors mapping, as illustrated in Figure 3. During deployment, we organize
all selectors in a sorted sequence and append them to the end of the file in the
format: [selector, reference to contract]. Subsequently, the addresses
section enumerates all the associated execution addresses.

During call execution, the metadata structure of the Crystal Logic is read. A
binary search is subsequently conducted over the selectors using the CODECOPY

code. Then the address reference is resolved to the actual execution address.

The associated computational cost is O(log2 N) for the CODECOPY execution.
As an illustrative example, for 50 selectors, there would be a requirement for
1 metadata read, 6 selector reads, and a single address lookup, resulting in
a gas expenditure of 24 units. In contrast, the Diamond pattern would have
necessitated a significantly higher cost, at a minimum of 2100 gas units.

For deployment, the associated cost is computed as 200× (N × 6+M × 20),
where N represents the number of selectors and M denotes the number of
execution addresses. Assuming an average of 10 selectors per contract, the cost
becomes 1600×N . This is approximately 13 times more cost-effective than the
21000×N required for diamonds.

9

https://docs.openzeppelin.com/contracts/4.x/api/proxy#TransparentUpgradeableProxy

2.4 TVL estimate

Each smart wallet has a list of tokens (fungible, non-fungible or native) known
in advance. The TVL estimate is boiled down to 2 questions:

1. What is the base currency for estimation

2. What is the price of each token in base currency

While our default base currency is USD, certain tokens might first be esti-
mated in USDC or ETH, depending on which is more apt, before being trans-
lated into USD.

Token prices can be classified into two primary categories:

• Spot prices

• Derivative prices

2.4.1 Spot prices

Spot prices are used for tokens like UNI, LINK, YFI, etc. The estimated value of
these tokens is derived from their trading activity against other notable tokens,
like ETH, USDC. Our primary source of reference is the Uniswap V3 spot prices,
which is further confirmed with the Uniswap V3 oracle. The workflow for this
process is as follows:

1. When token pair is added, the oracle analyzes current liquidity for different
fee tiers for this pair and picks the pool with the highest liquidity

2. When the price is queried, the oracle reads the current spot price from
the pool

3. This spot price is then cross-verified with the oracle using the intra-block
volatility threshold (IBVT). The IBVT represents the maximum allowed
price deviation between two consecutive blocks. If the deviation exceeds
this threshold, the transaction will be reverted.

2.4.2 Derivative prices

Derivative oracles are used for tokens such as Wrapped Staked Ether (wstETH),
Aave USDC (aUSDC), and Uniswap V3 NFT. The underlying principle is that
the price of these tokens can be precisely determined based on their underlying
assets (which in turn can be priced using Spot Oracles or other Derivative
oracles). For every derivative token, creating such an oracle is a straightforward
process.

10

https://medium.com/@alexeuler/a-novel-approach-for-onchain-mev-protection-using-uniswap-82a54e83c6fb
https://medium.com/@alexeuler/a-novel-approach-for-onchain-mev-protection-using-uniswap-82a54e83c6fb

2.4.3 Estimation of Smart Wallet TVL

To determine the TVL within the Smart Wallet, we use the following method-
ology:

1. Initialize a comprehensive registry encompassing all spot and derivative
oracles

2. Query the balances of all tokens within the smart wallet.

3. Classify each token based on whether it is resolved by a spot oracle or a
derivative oracle

4. If the token is resolved through a derivative oracle:

• Resolve its price relative to its underlying assets

• Append the underlying assets (along with their respective quantities)
to the inventory of tokens in the smart wallet

• Go to step 3

5. If resolved by a spot oracle, convert its value equivalently to USDC or
ETH and incrementally add this to the TVL

6. If there are still tokens except USDC and ETH, go to step 3

7. Finally, convert the values of ETH and USDC to USD utilizing the Chain-
link Oracle

2.5 Rebalance mechanics

Every smart wallet is equipped with a distinct asset allocation function, desig-
nated by the wallet’s owner. This function specifies the proportions of various
assets the wallet should hold, contingent upon available onchain data. To illus-
trate, consider a scenario where the asset allocation responds to the ETH/USDC
exchange rate:

• If the ETH/USDC price falls below 2000, the prescribed allocation is 30%
ETH and 70% USDC.

• Conversely, should the price surpass 2000, an even split is recommended,
allocating 50% to both ETH and USDC.

Additionally, the asset allocation function defines the conditions for an ”out-
of-balance situation”. For instance, consider the following scenarios:

11

Figure 4: Rebalance mechanics

• If the ETH/USDC price falls below 2000, and the ETH share is either
below 25% ETH or above 35%.

• If the ETH/USDC price surpass 2000, and the ETH share is either below
45% ETH or above 55%.

When the system detects an out-of-balance situation, it initiates the Dutch
auction on TVL. The TVL at any given time t is represented by the equation:

TV L(t) = p(t) · TV L0 (1)

Where:

• TV L0 denotes the current estimated value of the wallet’s TVL.

• p(t) is a time-dependent declining function. For instance, it could start at
1.01 and decrease to 0.99 over a span of 1 hour.

A rebalance can be executed by any external account or smart contract. The
executing entity has the capability to drain all assets from the vault, make the
appropriate swaps, and then return the assets. However, the transaction must
adhere to the following conditions:

12

1. All operations are completed within a single transaction.

2. After all operations, the wallet remains in balance (i.e., it is not ”out-
of-balance”).

3. After all operations, the TVL remains greater than or equal to TV L(t).

The mechanics of rebalancing are illustrated in Figure 4 for two tokens,
namely X and Y . The target asset allocation function is represented by OC.
The region defined by KON defines the in-balance state. Conversely, any state
not within this region is considered out-of-balance. For instance, point A lies
outside the in-balance region, triggering the start of the Dutch auction. The
KLMN region defines permissible asset allocations post-rebalance. As time
progresses without a rebalance, this region expands, broadening the rebalancing
possibilities.

From the perspective of a rebalancer, rebalancing is executed as soon as a
profit opportunity is identified. Consider the following example:

Suppose the current vault’s TVL stands at $1 million, and TV L(t) = $990k.
If the rebalancer can extract assets from the vault, conduct the necessary swaps,
and restore balance at a TVL of $990.5k, then a profit scenario arises. In this
case, the rebalancer would perform the rebalance, return assets worth only $990k
to the vault, and retain the remaining $0.5k as profit.

From the viewpoint of the vault owner, numerous rebalancers competing for
optimal execution. The first to successfully rebalance achieves the highest TVL
for the wallet owner, ensuring the most efficient rebalancing process.

2.6 Intent-based architectures

Conventionally, interactions with dApps in the DeFi space have followed an
imperative style. An example of such an interaction is a user stating, ”I want
to swap X token on Uniswap.” The introduction of intents has pivoted this
narrative towards a more declarative style, where a user might state, ”I want to
swap X for at least Y tokens, irrespective of the exchange medium used.”

In this system, these declarative intentions, or intents, are subsequently
executed by entities called solvers who act on behalf of the intent’s originator.

At present, intents are predominantly associated with swap operations in
platforms such as UniswapX and Cowswap. Yet, the concept is not limited to
just these exchanges.

The Declarative Liquidity Manager extends the intent idea to the domain
of liquidity management. Within the liquidity management sphere, the imme-

13

diacy of execution is often not critical. This difference from the swap-focused
platforms offers several unique advantages:

• Open Solver Market: There are no explicit trust or staking prerequi-
sites for solvers. This openness allows any software developer to join the
solver market.

• Blockchain-native Architecture: The system is wholly integrated with
the blockchain, eliminating the need for potentially vulnerable off-chain
services which could act as a single point of failure.

Collectively, these characteristics contribute to a competitive intent execu-
tion environment, ensuring an efficient and effective rebalancing process.

3 Use Cases

Fundamentally, DLM serves as a robust and adaptable framework designed for
the efficient storage and dynamic allocation of crypto assets. Its very versatile
and have a myriad of applications that can push DeFi ecosystem forward.

In this section, we will highlight a few applications, all of which are made
viable through the capabilities of the DLM:

1. Portfolio Management: DLM facilitates users to organize, monitor,
and strategically reallocate their assets, all in alignment with market flux
and individual investment objectives

2. Lending Markets: Using DLM, it is feasible to architect platforms which
bridge the gap between lenders and borrowers very effectively

3. Cost effective Call/Put Options: Using the DLM, one can employ a
payoff replicating strategy to emulate the payoff of Call/Put options. This
approach effectively offers you the benefit of a call option at a fair (and
low) premium price, all without the necessity of collateral

3.1 Portfolio Management

The application of the DLM in portfolio management is very straightforward.
By utilizing the DLM, investors can easily establish a target asset allocation
function for their portfolios. Once set, the DLM takes over, ensuring that
the portfolio is rebalanced in line with the predetermined strategy and market
prices.

Below are some examples of asset allocation strategies:

14

1. Markowitz Efficient Frontier: This is a foundational concept in mod-
ern portfolio theory, proposed by Harry Markowitz. It aims to construct
portfolios to optimize or maximize expected return based on a given level
of market risk.

2. Equal Weighting: This is a simple approach where each asset in the
portfolio is assigned the same weight. If there are 10 assets, each would
have a 10% allocation.

3. Value Weighting (or Market Cap Weighting): Assets are weighted
based on their market capitalization

4. Risk Parity: This approach aims to allocate weights to assets based on
the inverse of their volatility. Assets with higher volatility are assigned a
lower weight, and vice versa.

5. Inverse Volatility Weighting: Similar to risk parity, this strategy as-
signs weights based on the inverse of historical volatility.

6. Momentum-based Strategies: Assets are weighted based on their re-
cent performance. It’s based on the belief that assets that performed well
in the recent past will continue to do so in the near future.

7. Minimum Variance Portfolio: This strategy aims to construct a port-
folio with the lowest possible volatility by considering the correlation be-
tween assets.

8. Maximum Diversification: A strategy that seeks to maximize the di-
versification ratio of a portfolio.

3.2 Lending markets

The DLM offers an approach to lending based on the CDP (Collateralized Debt
Position) structures, frequently seen in decentralized finance.

Let’s consider a practical scenario for clarity:

Suppose you have an Ethereum (ETH) portfolio and you’re aiming to bor-
row 100 USDC against it, as illustrated in Figure 5. With DLN’s adaptive
mechanism, once the USDC value of the collateralized portfolio drops below
150 USDC, the system begins a gradual process of converting ETH to USDC.
This ensures that by the end of the selling process, your wallet holds a minimum
of 125 USDC, providing an adequate cushion to secure the initially borrowed
100 USDC.

It’s important to understand a distinct advantage here: the liquidation pro-
cess is based exclusively on price fluctuations. Unlike conventional liquidation
systems where a portion of the collateral might be forfeited to a third-party

15

Figure 5: CDP

liquidator, the DLN model eliminates such concerns. This results in a more
user-centric and efficient liquidation process.

3.3 Cost effective Call/Put Options

Options are financial instruments that derive their value from an underlying
asset. One of the foundational principles in financial mathematics is that certain
options can be replicated by a dynamic combination of the underlying asset and
a risk-free bond (or cash). Option payoff replication is simply the act of DLN
orchestrating a portfolio, based on underlying price shifts, as described in the
sections below.

Call Option Replication

Consider a European Call option with an exercise price of K and an expiration
time T . To replicate this Call option, an investor can follow these steps:

1. Buy ∆ units of the underlying asset, where ∆ is the option’s delta, rep-
resenting the change in option price for a unit change in the underlying
price.

2. Borrow the present value of (K − ∆ × current underlying price) at the
risk-free rate.

16

The combination of the underlying asset and the borrowed amount will, at
expiration, provide the same payoff as the Call option.

Put Option Replication

To replicate a European Put option with an exercise price ofK and an expiration
time T , the strategy differs:

1. Short ∆ units of the underlying asset.

2. Invest the proceeds, plus the present value of (K+∆×current underlying price),
in a risk-free bond.

The combination of the short position in the underlying and the risk-free
bond will, at expiration, mimic the payoff of the Put option.

4 Summary

The Declarative Liquidity Manager (DLM) represents a significant step for-
ward in the evolution of the DeFi landscape. Through the application of the
Safe{Core} SDK and Crystal Pattern systems, DLM offers a more gas-efficient
and flexible alternative to traditional smart wallet implementations. These foun-
dational components not only address the persistent challenges of gas costs and
upgradeability but also pave the way for modular and scalable DeFi solutions.

Key to DLM’s functionality is its rebalancing mechanism, which automat-
ically adjusts asset allocations in response to market conditions, ensuring op-
timized returns and asset security. By leveraging a Dutch auction system, the
rebalance process is made efficient, competitive, and profitable for rebalancers,
ensuring the smart wallet remains balanced while maximizing the TVL.

The introduction of intent-based architectures further emphasizes DLM’s
commitment to user-centricity, shifting from an imperative interaction paradigm
to a more declarative one. This approach empowers users to express their desired
outcomes, which are then optimally executed by solvers. This system is not only
user-friendly but also highly adaptable, making it applicable beyond simple
swaps to the broader domain of liquidity management.

DLM’s potential applications are vast. From facilitating dynamic portfolio
management, optimizing lending markets, to introducing cost-effective financial
instruments such as Call/Put Options.

17

	Overview
	Evolution of Liquidity Management in DeFi
	Account abstraction
	Intent-based architectures

	Declarative Liquidity Manager
	Introduction
	High level architecture
	Wiring framework
	Safe{Core} AA SDK
	Crystal Pattern

	TVL estimate
	Spot prices
	Derivative prices
	Estimation of Smart Wallet TVL

	Rebalance mechanics
	Intent-based architectures

	Use Cases
	Portfolio Management
	Lending markets
	Cost effective Call/Put Options

	Summary

