
Onchain computation proofs for EVM

Alex Euler

December 12, 2023

Abstract

Ethereum provides two main data/call types for external RPC users:
current data from regular nodes and historical data from archival nodes.
However, within a smart contract or the Ethereum Virtual Machine, ac-
cess is restricted to only current data.

This article presents an algorithm that allows for the validation of
historical call results for any smart contract on the Ethereum Virtual Ma-
chine. The algorithm enables smart contracts to retrospectively evaluate
past execution outcomes, facilitating actions such as penalizing previous
actions or inactions and reacting to events that happened but weren’t
logged on the blockchain.

1

https://alexeuler.dev

Contents

1 Introduction 3

2 Zero knowledge proofs for storage slots values 5

2.1 Components of the Proof System 5

2.2 Proof of Blockhash . 6

2.3 Proof of Storage . 7

2.4 Effectiveness for Proof of computation 7

3 Onchain Computation Proofs 8

3.1 Onchain EVM . 9

4 zkEVM Computation Proofs 11

5 Use cases 12

5.1 Decentralized Onchain Dutch Auctions 12

5.2 Keeper Network . 12

6 Conclusion 13

2

1 Introduction

The growth of Ethereum’s smart contract ecosystem has been impressive, driven
by the idea of smart contracts working together. This allowed them to share
data and make updates easily. This feature, called composability, helped decen-
tralized applications on Ethereum expand quickly.

But there was a limitation. Smart contracts were capable of accessing only
the most recent data on the blockchain, lacking the ability to retrieve historical
information. To illustrate, if a contract needed the latest price information, it
could make a call like this: Oracle.getPrice("USDC", "ETH") , which would

provide the current ETH/USDC price to the contract. Yet, it was impossible
to specify a past block to obtain the price at that particular point in time.

To fix this, Ethereum introduced the BLOCKHASH opcode, which in theory,
let developers access past block data:

Table 1: Blockhash opcode

Opcode Gas Input Output Description

40 20 blockNumber hash

Get the hash of one
of the 256 most recent
complete blocks

Blockhash is a cryptographic hash of the entire Ethereum state at this block
(see Table 1). This means you can prove the historical value for any storage
slot in block number BN in two steps:

1. Prove that the blockhash of block BN equals the value BH .

2. Using BH , prove the value V for a storage slot SS .

The proof consists of two parts:

1. The block headers from the current block going back 256 blocks, up to
block BN (or it may be empty if BN is in the most recent 256 blocks).

2. The Merkle-Patricia proof of the storage slot value with the State Root of
block BN and the blockhash BH .

See Figure 1 for details. The proof verifier (a smart contract) will perform
the following steps:

3

Figure 1: Ethereum storage structure

4

1. Retrieve the blockhash of the block closest to block BN using the BLOCKHASH

opcode.

2. If block BN is not among the recent 256 blocks, use the last available
onchain blockhash (current - 256).

3. From this block header, obtain the blockhash of the previous block.

4. Repeat this process until the blockhash BH of block BN is proven.

5. Verify the Merkle proof of the storage slot SS using blockhash BH .

This is the most straightforward approach, enabling the proof of historical
storage slot values. Utilizing solely this method, it is possible to implement
historical oracles within smart contracts (as specified in this article). The only
drawback of this approach is the gas costs. The proof of each storage slot
results in approximately 400k gas consumption, which increases the further we
look back into the past. While this works well on Layer 2 solutions where gas
costs are low, it’s often prohibitive on the Ethereum mainnet.

Axiom and Herodotus take this approach a step further by using zero knowl-
edge proofs (ZKP) to prove storage slots and arbitrary computations over stor-
age slots. The core advantage of this approach is that ZKP proofs can be
aggregated. With a fixed gas cost of around 300-500k, you can obtain proofs
for many storage slots and even computations over these slots.

2 Zero knowledge proofs for storage slots values

The concept of aggregating storage proofs into a single zero-knowledge proof
(ZKP) is fundamental in reducing gas costs for verification. This approach
is extensively documented in the Axiom Documentation and the Herodotus
Documentation. In this section, we provide a brief summary to ensure the
completeness of our discussion.

2.1 Components of the Proof System

The proof system under consideration has several components:

1. Proof of Blockhash: This involves having an onchain Merkle proof for
all block number-to-blockhash pairs

2. Proof of Storage: This part focuses on generating proofs for storage
slots corresponding to a specific blockhash

5

https://medium.com/@alexeuler/oracles-no-more-a-guide-to-obtaining-onchain-historical-data-for-smart-contracts-on-ethereum-9133bb1be4c7
https://axiom.xyz
https://herodotus.dev
https://docs.axiom.xyz
https://docs.herodotus.dev/herodotus-docs
https://docs.herodotus.dev/herodotus-docs

Figure 2: Merkle mountain rage (roots are red)

2.2 Proof of Blockhash

The process of storing proofs of blockhash utilizes a cryptographic structure
known as the Merkle Mountain Range (MMR). MMR is a specialized data
structure that combines the concepts of a Merkle tree and a mountain range. Its
primary purpose is to efficiently store and verify large sets of data, particularly
in append-only contexts like blockchain. Unlike traditional Merkle trees, which
are binary and balanced, MMRs consist of several smaller, individual Merkle
trees, often referred to as ”peaks,” arranged to form a range or sequence. (see
Figure 2)

Each peak in a Merkle Mountain Range is itself a perfect Merkle tree, and
these peaks vary in size. This variation allows for efficient append operations,
as new data can be added without needing to restructure the entire tree. The
root of an MMR is the combination of the roots of these individual peaks, and
it provides a cryptographic proof of the entire dataset.

Each leaf in MMR is a blockhash of a specific block. A dedicated smart
contract is deployed to verify the correctness of MMR roots using ZKPs. The
verification of a blockhash can be conducted in two distinct ways:

1. Onchain Comparison: The blockhash is compared directly to the out-
put of the BLOCKHASH opcode on the blockchain

2. Hash Chain Validation: In cases where the onchain comparison is not
feasible, the validity of the blockhash is ascertained by verifying its hash
chain linkage to known blocks. This method is visualized in Figure 1,
which illustrates the chain of hashes leading back to a known block.

The process of bringing the MMR roots onchain is executed in two primary
stages:

6

1. Initial Setup Phase: This stage involves the generation of the MMR
root for all blocks up to a recent block. It establishes a foundational state
from which subsequent verifications can proceed.

2. MMR Root Updates: Following the initial setup, the MMR root is reg-
ularly updated to bring all blocks up to the current point in the blockchain.
This continuous update ensures that the proof system remains current and
reliable.

2.3 Proof of Storage

With the accessibility of onchain proofs for blockhashes now established, the
next crucial step involves generating ZKPs for a specific set of storage slots. The
process is based on converting the standard Ethereum Merkle-Patricia proofs
into a format compatible with ZKPs. This conversion process involves encoding
the traditional proofs into a structure that can be efficiently processed and
verified through ZKP algorithms.

Once the proofs are translated into the ZKP format, the final step is to
submit these proofs to Ethereum. ZKPs are more gas-efficient compared to the
conventional onchain verification methods with Merkle trees.

2.4 Effectiveness for Proof of computation

Axiom implements a ZKP system that uses storage slots and other blockchain
data. The system is designed to prove arbitrary statements about the historical
state of Ethereum.

Theoretically, this ZKP system has the capacity to perform arbitrary com-
putations. However, in practice, these computations must be implemented in
specialized languages tailored for zero-knowledge applications, such as Halo2,
Circom, or Cairo. This requirement presents a practical limitation, particularly
when verifying the historical execution of contract calls on the blockchain.

For effective verification, one would need to translate or port the smart con-
tracts, along with any dependent contracts, from Solidity (the native language
of Ethereum smart contracts) to one of these ZKP-compatible languages. This
translation process is not only technically demanding but also makes the task
of verifying historical contract executions somewhat impractical.

7

3 Onchain Computation Proofs

In addressing the challenge of verifying historical onchain calls, we propose
a comprehensive multi-step process that integrates both offchain and onchain
components, as illustrated in Figure 3.

Figure 3: Process Flow of Onchain Computation Proofs

The suggested process is broken down into a few steps:

1. Use the offchain RPC API (specifically the debug traceCall method)
to retrieve storage slots and their corresponding values for a particular
onchain call at a given block.

2. Use the acquired data to interact with a storage prover, subsequently
obtaining a proof.

3. Additionally, get a proof of the contract’s hashcode at the time of execu-
tion. The storage provers we mentioned earlier are capable of generating
this proof as well.

4. Forward the storage data and hashcode to a verifier smart contract.

8

5. The verifier, in turn, confirms this data onchain through the use of Storage
Verifier smart contracts.

6. The verifier then submits the storage slot values and hash code to an
onchain EVM implementation (as discussed below).

7. The onchain EVM retrieves the current contract code, matches it with the
provided hashcode, and executes the code. However, rather than reading
actual values from the storage, it uses the supplied storage values.

8. Finally, the result of the call is returned to the verifier for final analysis.

This approach makes the computation proof viable for any smart contract
execution. All that is required are storage proofs and a single onchain EVM im-
plementation applicable to all contracts that have ever existed on the Ethereum
blockchain.

3.1 Onchain EVM

An EVM is a state transition function that alters the state in response to an
Ethereum transaction. The function can be represented as:

St+1 = E(St, Tx)

where St+1 is the state after the transaction, St is the state before the transac-
tion, and Tx is the transaction.

The EVM has a finite set of opcodes, each altering the Ethereum state in
its own specific way. It incorporates four types of memory:

• Stack

• Calldata

• Dynamic

• Storage

Thus, we can model the execution context of the onchain EVM as shown in
Table 2.

Then for every EVM instruction we’ll make a state transition. For all op-
codes it’ll behave exactly the same as EVM except we’ll implement a custom
‘SLOAD‘ code to use our slot values from the proof rather than reading them
onchain. Additionally we can disable mutating opcodes like ‘SSTORE‘ and
‘CALL‘ (i.e. have only view call semantics).

Below is the reference implementation of the ‘SLOAD‘ opcode:

9

Table 2: Execution context

Name Type Description
code bytes Bytecode of the smart contract being executed.
data bytes Input data for the smart contract call.
value uint256 Value sent along with the smart contract call.
pc uint256 Program counter indicating the current instruction

being executed.
stack bytes32[] Stack used for executing EVM operations.
mem bytes Memory used during contract execution.
msize uint256 Size of the memory used during contract execution.
storageKey bytes32[] Storage keys for accessing contract storage.
storageData bytes32[] Storage data corresponding to storage keys.
logs bytes[] Log entries generated during contract execution.
output bytes Output data produced by the contract execution.
running bool Indicates if the contract is currently running.
reverting bool Indicates if the contract is in the process of reverting.

1 function SLOAD(State memory evm) internal pure {

2 bool found = false;

3

4 if (evm.storageKey.length == 0) {

5 evm.stack[evm.stack.length - 1] = bytes32 (0);

6 return;

7 }

8

9 uint256 index = 0;

10 for (uint256 i = 0; i < evm.storageKey.length; i++) {

11 if (evm.storageKey[i] == evm.stack[evm.stack.length - 1]) {

12 index = i;

13 found = true;

14 break;

15 }

16 }

17

18 if (found == false) {

19 evm.stack[evm.stack.length - 1] = bytes32 (0);

20 return;

21 }

22

23 evm.stack[evm.stack.length - 1] = evm.storageData[index];

24 }

This approach works effectively, allowing us to create onchain proof of any
historical call result. However, a primary concern now is the gas cost on the
mainnet:

• Storage Proofs: The storage proofs will burn a significant amount of gas.

10

• Onchain EVM Execution: Additional gas costs will arise from onchain
EVM execution. However, this increase is not too substantial since no
actual storage is read; the operations are limited to memory and stack.

Nevertheless, there is potential to further reduce the gas cost.

4 zkEVM Computation Proofs

The final twist in our approach involves the use of zkEVM (Zero-Knowledge
Ethereum Virtual Machine) to create a ZKP of an onchain EVM execution. In
this scenario, the onchain verifier would only need to verify a single ZKP and
thus save the gas costs.

The concept appears straightforward, yet there are only a few zkEVM im-
plementations available in the market. Prominent zkEVM providers include:

• zkSync

• Polygon

• Scrolls

While some of these platforms are already operational, they are relatively new
and still evolving.

Another critical aspect to consider is the categorization of zkEVMs into three
distinct levels:

1. Consensus Compatible: Ideal for our scenario, but these types of
zkEVMs are currently under development and not yet released.

2. EVM Compatible: Theoretically usable, but additional steps are nec-
essary for full compatibility with onchain EVM.

3. Solidity Compatible: Doesn’t work for our scenario.

Lastly, it’s important to consider that generating a zkEVM proof might
require significant offchain resources. This factor should be carefully factored
into any planning or implementation.

11

5 Use cases

5.1 Decentralized Onchain Dutch Auctions

A Dutch auction, also known as a descending price auction, is a type of auction
where the auctioneer begins with a high asking price which is progressively
lowered until a participant accepts the price.

Examples of Dutch auctions implemented onchain include:

• VRGDA (Variable Rate Gradual Dutch Auction)

• DLM (Declarative Liquidity Manager)

To commence a Dutch auction onchain, an initial call must be made, marking
the start of the auction. However, this approach presents certain challenges:

1. Centralization Issue: It requires a kind of trusted Auction Manager to
initiate the auction, potentially compromising decentralization.

2. Maintenance Cost: There are ongoing costs associated with managing and
executing the necessary actions.

By leveraging onchain call proofs, the responsibility of initiating the auction
can be transferred to the participants (auction bidders). Here’s how it works:

• As an auction participant submits their bid, they simultaneously provide
a proof that the auction should have started at a specific block in the past
(a result of a previous onchain call).

• This process validates the bid and effectively initiates the auction at the
same time.

This model effectively eliminates the need for an Auction Manager, leading
to a more decentralized and autonomous auction process, aligning with the
principles of blockchain and decentralized systems.

5.2 Keeper Network

A keeper network is a system where specialized nodes, known as keepers, are re-
sponsible for performing certain network functions. These functions can include
executing transactions, managing smart contracts, or performing maintenance
tasks. The key feature of a keeper network is its ability to automate these

12

https://www.paradigm.xyz/2022/08/vrgda
https://alexeuler.dev/declarative-liquidity-manager.pdf

processes, which are crucial for the efficiency and reliability of blockchain oper-
ations.

One significant issue within keeper networks is the lack of a hard guarantee
that a keeper will not miss a task execution. This uncertainty can compromise
the reliability of the network. To mitigate this risk, some systems implement
staking mechanisms for keepers, where they must stake a certain amount of
cryptocurrency as a form of collateral.

However, introducing staking necessitates a mechanism to penalize (or slash)
keepers for any misbehavior or failure to execute tasks. This is where the
challenge lies: designing a system that can fairly and accurately identify and
penalize such failures.

A potential solution to this challenge is Eigenlayer. Eigenlayer is a protocol
that allows for the creation of decentralized, trust-minimized networks over
existing blockchains. It works by enabling users to stake their tokens on specific
network functions or validators, effectively creating a layer of accountability and
security.

To leverage Eigenlayer in a keeper network, the following approach can be
adopted:

• Onchain proof is submitted to demonstrate that in block X, a call was
supposed to be executed by keeper Y but was not.

• Upon verification of this failure, Eigenlayer’s staking and slashing mech-
anisms can be used to penalize the keeper, ensuring accountability and
reliability.

6 Conclusion

This article has explored the domain of onchain computation proofs, particularly
focusing on the ability to create and verify proofs of historical smart contract
calls within the Ethereum ecosystem.

The approach outlined here leverages the power of onchain data and zero-
knowledge proofs to retrospectively validate smart contract executions. This
method makes decentralized apps more transparent and trustworthy, and also
creates new ways for smart contracts to interact with and check past states.

13

https://www.eigenlayer.xyz

	Introduction
	Zero knowledge proofs for storage slots values
	Components of the Proof System
	Proof of Blockhash
	Proof of Storage
	Effectiveness for Proof of computation

	Onchain Computation Proofs
	Onchain EVM

	zkEVM Computation Proofs
	Use cases
	Decentralized Onchain Dutch Auctions
	Keeper Network

	Conclusion

